
Some Fundamental R Programming Concepts
Lesson 02

Psychology 310

1 Creating Our Own Functions in R
When we program in R, often we find we can do things with a single com-
mand, especially when we are performing rudimentary statistical operations.
This is because R has been designed from the ground up with statistics in
mind.

Consider, for example, the computation of the sample mean. As we have
already seen in class, we don’t need to tell R how to compute the mean. For
example, if a vector X has elements 1,2,3,6, we simply say

> X <- c(1,2,3,6)
> mean(X)
[1] 3

The mean of the numbers appears automatically. This works just fine,
but how?

At some point, someone created an R function that automatically com-
putes the mean of a set of numbers. In this lesson, we learn just a bit about
how this is done. Learning to program functions in R is the secret to becom-
ing a “power user” and getting the most out of R.

Let’s examine a simple R function that we can create for ourselves. We
have already learned in class that the deviation score equivalent of a set of
numbers is generated by subtracting the mean from each score in the group.
Specifically,

dx = X − X̄ (1)

In R, we can create a function to do this automatically. Here is the code:

> deviation.score <- function(x) {
+ return(x - mean(x))
+ }

Let’s see how it works

1



> X

[1] 1 2 3 6

> deviation.score(X)

[1] -2 -1 0 3

We also learned in lecture that the Z-scores corresponding to a list of
numbers are obtained by dividing the deviation scores by the standard devi-
ation.

Zx = X − X̄

Sx

= dx

Sx

(2)

Since we already have a deviation score function available, we can use it
to construct a Z-score function.

> z.score <- function(x){
+ return(deviation.score(x)/sd(x))
+ }

Now, since the deviation score function is so simple, we could have defined
the Z score function without using it, i.e.,

> z.score.2 <- function(x){
+ return((x - mean(x))/sd(x))
+ }

However, in many situations the functions used to perform a more com-
plex operation involve a substantial amount of code. In such situations, the
more complex function is made much simpler and easier to read by cascading
functions, i.e., by building complex functions out of simpler ones.

Let’s try our Z score function

> X
[1] 1 2 3 6

> z.score(X)

[1] -0.9258201 -0.4629100 0.0000000 1.3887301

It works perfectly.

2



2 The Anatomy of a Simple Function
In order to construct a function in R, you need to use the proper syntax. You
begin by thinking up a name for your function. Chapter 10 of the manual
An Introduction to R gives the following simple example.

> twosam <- function(y1, y2) {
+ n1 <- length(y1); n2 <- length(y2)
+ yb1 <- mean(y1); yb2 <- mean(y2)
+ s1 <- var(y1); s2 <- var(y2)
+ s <- ((n1-1)*s1 + (n2-1)*s2)/(n1+n2-2)
+ tst <- (yb1 - yb2)/sqrt(s*(1/n1 + 1/n2))
+ tst
+ }

This is a function to compute the classic two-sample t-test for two inde-
pendent samples of possibly different sizes n1 and n2. The first line of the
function definition begins with twosam <- function, alerting the R system
that twosam will from that point be used as the name of a function that will
now be defined.

The input to the function is listed next in parentheses. In this case the
input is the two vectors y1 and y2.

The actual code defining what the function does with these two input
vectors is then given between braces. (The braces define a block of code, and
may be omitted if the function does its work in a single line.)

In the sample coding given above, we see that the first several lines each
contain two commands separated by semi-colons, rather than having one
command. This makes the function listing more compact, but in my opinion
makes it more difficult to read.

2.1 Naming and Commenting
Several aspects of the sample function in the above example are open to
question. To begin with, the function name is not very useful. The name
twosam could stand for many things. One key to good function naming is
that the function name should tell you (within reason) what the function
does! If you have a flawless memory, you might remember what twosam does
— for a while. But after several months, unless you use the function every

3



day, you will have to page through your code to find the proper function
name, thereby wasting valuable time.

Expert programmers generally agree that function names should be both
long and fully descriptive, using complete English words rather than abbre-
viations. The name twosam satisfies none of these prescriptions.

It is instructive to see how a system that involves thousands of functions
does it. The computer algebra system Mathematica uses function names that
are long and generally fully descriptive. This doesn’t necessarily mean that
you will recall the name of the function, but it might help.

For example, in Mathematica the equivalent function to twosam is called

MeanDifferenceTest

Notice that the emphasis is on what the function does, rather than what
some statistician might choose to call it. However, one might just as well
have called the function

MeanDifferenceTTestForTwoIndependentSamples

Notice that this latter name is more fully descriptive. It takes time to
type out the name, but once it is typed, someone reading any block of code
employing the function will know what that function is doing without having
to look it up.

Compare

y1 <- rnorm(23)
y2 <- rnorm(32)
MeanDifferenceTTestForIndependentSamples(y1,y2)

with

y1 <- rnorm(23)
y2 <- rnorm(32)
twosam(y1, y2)

The former is, in an important sense, self-documenting. Someone reading
the code would be likely to figure out what the code is doing without having
to look up the function name. Since it is already clear that y1 and y2 are
two samples, the function call twosam(y1, y2) is redundant, and probably
not helpful.

4



Another aspect of the sample function twosam as shown above is that it is
not properly commented. It takes time to include comments in your function
code. However, these comments can be invaluable if, several months after
writing the code, you have to return to it and (a) understand what it does,
and (b) modify it or find an error in it.

Let’s rewrite the sample function to make it more readable and easier to
maintain.

> MeanDifferenceTTestForIndependentSamples <- function(y1, y2) {
+
+ ############### Function Description ############################
+ # Purpose: Computes 2-sample independent sample t-statistic #
+ # for comparing the means of two samples. #
+ # #
+ # Input: y1 = data for sample 1 #
+ # y2 = data for sample 2 #
+ # Output: The t-statistic #
+ #################################################################
+ # Compute sample sizes
+ n1 <- length(y1)
+ n2 <- length(y2)
+ # Compute group means
+ ybar1 <- mean(y1)
+ ybar2 <- mean(y2)
+ # Compute group variances
+ var1 <- var(y1)
+ var2 <- var(y2)
+ # Compute pooled variance estimate
+ pooled.var <- ((n1-1)*var1 + (n2-1)*var2)/(n1+n2-2)
+ # Compute t-statistic and return
+ tStatistic <- (ybar1 - ybar2)/sqrt(pooled.var*(1/n1 + 1/n2))
+ return(tStatistic)
+ }

Compare my version of the function with the original. Notice that I in-
serted detailed comments. Also, notice how I changed several variable names
to make them more descriptive. In particular, the author of twosam made
what most coders would consider a serious error of judgment. Many statistics

5



students occasionally forget the distinction between the sample variance S2

and the sample standard deviation S. So a test problem will give the vari-
ance and the student will insert it in a calculation that calls for the standard
deviation without remembering to take the square root.

Mindful of how easy it is to commit this kind of error, it is important to
eliminate the likelihood of such an error in one’s coding. With that in mind,
it was a mistake to use the notations s1, s2, and s to stand for variances
in the twosam function code. I changed the names of the variables to var1,
var2, and pooled.var respectively.

Note also how I changed yb1 to ybar1. Perhaps mean1 would have been
even better.

The point is that, if you are going to go to all the trouble to create your
own functions and thereby create your own, permanent, personal environ-
ment for statistical computation and document generation, you should also
take a small amount of additional time to make sure that this effort will be
leveraged. That is, you will not have to waste time in the future carefully
re-reading your code to see how it works, and you will also be in a position
to give the code to others who might profit from it, secure in the knowledge
that they too will be able to figure out how the code works.

Let’s try out our revised function to see how it works
> y1 <- rnorm(23)
> y2 <- rnorm(32)
> twosam(y1,y2)
[1] -1.200395
> MeanDifferenceTTestForIndependentSamples(y1,y2)
[1] -1.200395

Here is a pointer. You might be asking yourself, “Suppose I have a situa-
tion in which I am going to use the MeanDifferenceTTestForIndependentSamples
function several times. Isn’t awfully inconvenient to type that name all those
times?” Yes, it is. However, you always have the option of assigning the
longer function name to a shorter temporary name within your code. That
way, anyone else reading the code in the future (including you) will still have
faster access to what the code means. Consider the following:
> T2 <- MeanDifferenceTTestForIndependentSamples
> T2(y1,y2)
[1] -1.200395

6



2.2 Parameter Lists and Default Values
At the beginning of a function definition is the input parameter list, enclosed
in parentheses. The names that appear on this list are the named arguments.
In some cases, the named arguments will have default values. Here is a simple
example of such a function, with some sample calculations.

7



> NormalIntervalProbability <- function(a, b, mu=0, sigma=1){
+ ########### Function Description ########################
+ # Purpose: Computes the probability that a normal #
+ # random variable with mean mu and standard #
+ # will have a value between a and b # # Input: a,b = endpoints of the interval #
+ # Note: a need not be less than b #
+ # Output: The probability #
+ #########################################################
+
+ if(a==b)return(0) else
+ return(abs(pnorm(b,mu,sigma)-pnorm(a,mu,sigma)))
+ }
> # Some Example Calculations
> # Example 1
> NormalIntervalProbability(-1, 1)

[1] 0.6826895

> # Example 2
> NormalIntervalProbability(1, -1)

[1] 0.6826895

> # Example 3
> NormalIntervalProbability(100, 115, 100, 15)

[1] 0.3413447

> # Example 4
> NormalIntervalProbability(100, 115, sigma=15, mu=100)

[1] 0.3413447

The above sample calculations demonstrate some important properties of
the way R handles parameter values input to a function:

1. If values are input without being assigned to a parameter name, they are
assigned to the parameters in the order they are listed in the function
definition. Such parameter values are said to be given in “unnamed
positional” form. In the first two examples, the input values were
simply numbers. Consequently, they were assigned to the parameters
a and b in the order given in the function definition. For example, in
the first call, −1 was assigned to a and 1 was assigned to b.

8



2. If a parameter has a default value, and no input value is provided,
then the default value is assigned to the parameter. So in the first
two examples, 0 and 1 are assigned to the parameters mu and sigma
respectively. On the other hand, in the third example, mu is given the
value 100 and sigma is given a value of 15.

3. if arguments to called functions are given in the “name=object” form,
they may be given in any order. Furthermore the argument sequence
may begin in the unnamed, positional form, and specify named ar-
guments after the positional arguments. So in the 4th example, a is
assigned the value 100, b is assigned the value 115. These values are
said to be input in “unnamed, positional form.” The final two param-
eters are correctly assigned, even though they are given out of order,
because they are provided in name=object form.

It is also important to realize that not only can the inputs in a call to a
function be arbitrary expressions, it is also the case that default values for
a parameter are not restricted to be constants! The default values can be
arbitrary expressions, including functions of other parameters input to the
function.

Here is an example.

> PlotNormalCurve <- function(mu = 0, sigma = 1,
+ left.limit = mu - 3*sigma,
+ right.limit = mu + 3*sigma) {
+ ########### Function Description ########################
+ # Purpose: Plots a normal density function for a #
+ # N(mu,sigma) distribution between x values #
+ # of left.limit and right.limit # # Input: mu,sigma = Normal Distribution parameters #
+ # left.limit, right limit = plot range #
+ # Output: The probability density plot #
+ #########################################################
+
+ curve(dnorm(x,mu,sigma),left.limit,right.limit,ylab = "f(x)")
+ }
> PlotNormalCurve()

9



−3 −2 −1 0 1 2 3

0.
0

0.
1

0.
2

0.
3

0.
4

x

f(
x)

In the above example, the mean and standard deviation of the normal
curve are 0 and 1 by default, and the plot is drawn over the default computed
range from −3 to 3. In the next example, we change the mean and standard
deviation to 100 and 15, and since we do not input the lower and upper range
of the graph, it is computed for us as 55 to 145.

> PlotNormalCurve(100,15)

10



60 80 100 120 140

0.
00

0
0.

00
5

0.
01

0
0.

01
5

0.
02

0
0.

02
5

x

f(
x)

11


